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Chapter 4. Point and non-point solutions of 
electron equations  
1.0. Introduction 
1.1. Statement of the problem  

The theory of calculation of charge, mass and other characteristics of electron on 
the basis of the field equations has arisen originally in classical electrodynamics  and 
was developed by W. Kelvin, J. Larmor, H. Lorentz, M. Abraham, A. Poincare, etc. 
(Pauli, 1958; Ivanenko and Sokolov, 1949). It is based on hypotheses of the field 
mass and field charge, according to which the particles’ own energy or mass is 
obliged to energy of fields, and the charge of particles is defined by the particles’ 
own fields. These ideas afterwards were transferred to quantum mechanics. But 
neither classical, nor quantum theories could explain consistently the nature of mass 
and charge of elementary particles, although for the electron some consecutive 
theories have been constructed. 

1.2. The general requirements to the classical electron mass theory  
At first we will address to the hypothesis of electron field mass within the 

framework of classical electrodynamics (Lorentz, 1916; Ivanenko and Sokolov, 
1949).  

According to the hypothesis, which has been put forward in the end of the 19th 
century by J.J. Thomson and advanced by H. Lorentz, M. Abraham, A. Poincare, 
etc., the electron’s own energy (or its mass) is completely caused by the energy of the 
electromagnetic field of electron. In the same way it is supposed that the electron 
momentum is obliged to the momentum of the field. Since electron, as any 
mechanical particle, possesses the momentum and energy, which are together the 4-
vector of the generalized momentum, the necessary condition of success of the 
theory will be the proof that the generalized momentum of an electromagnetic field is 
a 4-vector. 

Thus, for the success of the field mass theory the following conditions should be 
satisfied at least: 

At first, it is necessary to receive final value of the field energy, generated by a 
particle, which could be precisely equated to final energy of a particle (i.e. product of 
the mass by the square of the light speed). 

At second, the value of a momentum of the field, generated by a particle, must 
not only be final, but also has the proper correlation with energy, forming with the 
last a four-dimensional vector. 

Thirdly, the theory should manage to deduce the equation of movement of 
electron. 
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Fourthly, it is necessary to obtain of electron spin, as a spin of a field (that needs 
the quantum generalization of the theory of field mass, since a spin is quantum 
effect). 

The analysis shows, that there are two conditions, by which the generalized field 
momentum  is a 4-vector.  µG

In case of space without charges the size  

 )(4 drT
c
iG ∫= µµ ,  (1.1) 

will represent a 4-vector if divergence of energy tensor of a field turns into zero: 
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For example, the electromagnetic field, which is located in a space without 
charges, satisfies similar conditions. In particular, due to this fact, in the photon 
theory, EM field is characterized not only by energy, but also by momentum.  

2) The condition, by which the energy and momentum of an electromagnetic 
field form a 4-vector at the presence of charges, is formulated by the Laue theorem. 
According to the last, at the presence of charges the size  is a 4-vector only in the 

case when in the coordinate system, relatively to which electron is in rest, for all the 
energy tensor components the following parity is observed 

µG

 0)(0 =∫ ordT r
µν ,  (1.3) 

except for the component , the integral of which is a constant and is equal to full 

energy of the field, generated by particle (here 

0
44T

)( ordr  is elementary volume in 
reference system, in which the electron is in rest). The equality (1.3) expresses a 
necessary condition, by which the whole particle charge should be in balance. 

We can equate this field energy to the particle’s own energy, expressing in this 
way the basic idea of a field hypothesis. According to the last: 
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,  (1.4) 

Thus, the mass of a particle from the field point of view can be defined in two 
ways: 

1) proceeding from EM momentum of a field  it is possible to define mass as 
factor of proportionality between a field momentum and three-dimensional speed of 
a particle. 

1G
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2) if we consider the electron’s own energy as equal or conterminous to the 

energy of a field, and mass as the ratio of a field energy 4G
i
c

, to a square of light 

speed (i.e. as the fourth component of a generalized momentum). 
The attempts to execute this program, proceeding from classical linear Maxwell 

theory, have led to difficulties. In particular, it was not possible to prove the Laue 
theorem (Tonnelat, 1959).  In the classical theory the dynamics (mechanics) and 
electrodynamics are completely independent from each other. Electromagnetic 
actions are characterized by component  of an energy-momentum tensor of an 
electromagnetic field. It does not include the energy and momentum of the substance, 
which should be subsequently inserted. The attempts of Lorentz and Poincare to 
coordinate the theory on the basis of the assumption that energy of substance has an 
electromagnetic origin, have not led to a positive result. In Lorentz electron theory 
(linear in essence) existence of charges it is possible to explain only by introduction 
of forces of non-electromagnetic origin. 

0
0T

Nevertheless (Sokolov and Ivanenko, 1949), there were also a number of 
successes, which carried a hope to solve this problem by any change of the theory. 
The most perspective change of Maxwell-Lorentz theory appeared to be its non-
linear generalization. 

1.3. Non-linear classical electrodynamics 
In the chapter 2 within the framework of CWED we have received the non-

linear equation for the electromagnetic (EM) electron and have shown that on 
sufficient distance from a particle it coincides with the linear Dirac electron equation. 
But unfortunately the solution of the non-linear equation of the curvilinear 
electromagnetic wave is not received yet. Its first approach – the non-linear 
Heisenberg equation - also did not manage to be solved (although here the 
encouraging results have been received). 

We will show the known classical non-linear theories of Gustav Mie, M. Born - 
L. Infeld, E. Schroedinger etc. represent the approximate solutions of non-linear 
equation of CWED, which enable us to estimate the sizes of a particle and 
distribution of a field in approach of spherical electron. Besides, the nonlinear 
theories find out an opportunity of description of EM electron as point or not point, 
depending on the used mathematics. 

2.0. Gustav Mie approach to the electron theory  
2.1. Prior history 

Gustav Mie made the first attempt to construct a purely electromagnetic theory 
of charged particles. (Mie, 1912a; 1912b; 1913; Pauli, 1958; Tonnelat, 1959),). 
Proceeding from some formally irreproachable hypothetical non-linear generalization 
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of electrodynamics, he managed to construct a theory, which has overcome all 
difficulties of the classical theory. 

As we have said above, in the theory of the electron before G. Mie (Bialynicki-
Birula, 1983), the electron was not treated as a purely electromagnetic entity, but it 
was also made of other stuff, like, for example, Poincare stresses and the mechanical 
mass. Mie wanted only the electromagnetic field to be responsible for all the 
properties of the electron. In particular, he wanted the electromagnetic current to be 
made of electromagnetism.  

In order to achieve this goal, Mie assumed that the potential four-vector enters 
directly into the Lagrangian and not only through the field strength. The generation 
of the current has been achieved in this manner, but the price was very high. The 
potentials acquired a physical meaning and the gauge invariance was lost. This 
property has been found unacceptable by other physicists and the theory of Mie has 
been shelved for many long years.  

2.2. G. Mie theory 
In his theory Mie has made two essential steps (Pauli, 1958; Tonnelat, 1959). At 

first, Mie was the first who suggested in the construction of the theory leaning on a 
Lagrangian, dependent on fundamental invariants. At second, to get rid of Poincare–
Lorentz forces that have non-electromagnetic origin, Mie entered a uniform sight at a 
field and substance. He set a problem in order to generalize the field equations and 
the energy-momentum tensor of Maxwell-Lorentz theory in a way that inside the 
elementary charged particles the repulsion Coulomb forces would counterbalanced 
by other forces of E origin also, and outside of particles the deviation from ordinary 
electrodynamics would imperceptible. He assumed that any energy and substance 
has an electromagnetic origin, and sets as the purpose to deduce properties and 
characteristics of charges from properties of a field.  

About the kind of Lagrangian L, which is frequently called a world function, in 
non-linear electrodynamics it is possible to make some general statements. The 
independent invariants of an electromagnetic field, which can be formed from 
bivector (where are the tensor components of electromagnetic field 

strengths) and a vector 

µνF Fµν

( ) ( ) ( )ii AAAiAiA ,,, 4=== ϕϕµ

r
 are the following: 

1) The square of bivector : µνF µν
µν FFI

4
1

1 = ; 2) the square of a pseudo-

vector µν
µν

*
2 4

1 FFI = (where  is the dual electromagnetic tensor). 3) The 

square of a 4-vector of electromagnetic potential : ; 4) The square 

of a vector: ;  5) The square of a vector:  . 

µν*F

µA µ
µ AAI =3

µνFI =4 µA *
5 µνFI = µA
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 Therefore L can depend only on these five invariants. If L is equal to the first of 
the specified invariants, the field equations are degenerated into ordinary equations of 
the electron theory for space without charges. Thus, L can noticeably differ from 

µν
µν FF

4
1

 only inside the material particles. Invariant 2 can be included in L only 

as a square, in order not to break the invariance, concerning spatial reflections. 
Invariants 3-5 break the gauge invariance. Further statements about the world 
function L cannot be made. Thus, for the selection of L there are an infinite number 
of opportunities. 

Gustav Mie accepted as initial the following Lagrangian: 

 ( )µ
µ

µν
µν AAfFFLMi ±−=

4
1

,    (2.1’) 

or 

 ( ) ( )µ
µπ

AAfHELMi ±−−= 22

8
1

,  (2.1’’) 

where  f  is some function. 
Using this Lagrangian (Tonnelat, 1959), Gustav Mie managed to receive the 

final energy (or mass) of the charged particle as a value completely caused by the 
energy of the field of this particle. Besides, in this theory the Laue theorem of 
stability is carried out and the proper correlation between energy and momentum of a 
particle is reached. 

For further analysis it is also useful to mention the attempt of H. Weyl (Pauli, 
1958) to interpret on the basis of Mie theory the asymmetry (with respect to 
distinction of masses) of both sorts of electricity. If L is not a rational function of 

µ
µ AA , it is possible to put: 

 ( )µ
µ

µν
µν AAfFFL Mi +−=+

4
1

,  (2.2’) 

 ( )µ
µ

µν
µν AAfFFL Mi −−=−

4
1

,  (2.2’’) 

Thus, if L is a multiple-valued function of the invariants mentioned above, it is 
obviously possible to choose as world functions for positive and negative charges 
various unequivocal branches of this function. 

2.3. Connection the Mie theory with the CWED  
Let's show, that Mie Lagrangian after some additions can be submitted as 

Lagrangian similar to Lagrangian of CWED (and consequently, of  QED). 
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As we know (Pauli, 1958; Sommerfeld, 1958), the charge density is not invariant 
concerning Lorentz transformation, but a charge is. Also it is known, that the square 
of 4-potential, i.e. , is invariant concerning Lorentz transformation, but 

it is not invariant relatively to gauge transformations. But it appears that the product 
of a square of a charge on  will be an invariant concerning both Lorentz and gauge 
transformations. Let’s show this. 

µ
µ AAI =3

3I

2.3.1. Larmor - Schwarzschild invariant  
According to (Pauli, 1958) and (Sommerfeld, 1958), R. Schwarzschild 

(Schwarzschild, 1903), entered the value 

 A
c

Sw

rr
⋅−=

υϕ ,   (2.3) 

which he called "electrokinetic potential", and has shown, that this value, being 
multiplied by density of a charge, forms the relativistic invariant:, 

 µ
µ

υϕρρ Aj
c

A
cwSL ⋅⋅−=⋅−==

1)('
rr

,  (2.4) 

where { }υρρµ
r,icj =  is 4-current density, { }AiA

r
,ϕµ =  is 4-potential. Using 

(2.4) Schwarzschild has formed the following Lagrange function:  

 ( )∫ ∫ ⋅−+−= dVA
c

dVEHL )(
2
1 22

rrυϕρ ,  (2.5) 

and by time-integration (2.5) he has received the function of action. 
Thus, in 4-dimensional designations the Schwarzschild Lagrange function 

density (or Lagrangian) will be written down as follows: 

 µ
µ

µν
µν Aj

c
FFL 1

4
1

−= ,  (2.6) 

and the Lagrange function will be:  

 ∫ ∫−= ττ µ
µ

µν
µν dAj

c
dFFL 1

4
1

,  (2.7) 

 (In the note 10 to the book (Pauli, 1958) Pauli marked that before Schwarzschild 
the same Lagrangian has been suggested by J.J. Larmor (Larmor, 1900)). 

Let’s consider now the radicand in the Ми Lagrangianе: 

      ,  (2.8) 222
iAAAA +−=≡ ϕµµµ

Multiplying it on the squares of density of a charge and a square of a charge, we 
shall receive accordingly: 
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     2222 )()( AeeAe
r

+−= ϕµ ,  (2.9) 

We will enter the values of density of energy of interaction and energy of 
electron interaction, accordingly: 

         ρϕ=eU , ϕε ee = ,  (2.10) 

and also the density of momentum and the momentum of electron interaction, 
accordingly:, 

      iie A
c

g ρ1
= , iie eA

c
p 1

= ,  (2.11) 

Then from (2.9) we shall receive: 

          ( )2222
ee pcAe r

+−= εµ ,  (2.12) 

Since ( ) ( ) 2222 ˆ,ˆ ppo
rrr

== αεεα  take place, these expressions can be also 

written down as: 

 ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −−=−−=

222
0

22222 ˆˆ
ieeiee pcpcAe rrαεαεµ ,  (2.13) 

Using the above-stated results, for non-linear part of the Mie Lagrangian 

( )µ
µ AAfLN

Mie ±= , we can accept the expression: 

    ( ) ( )222 AceAAf
r

−±=± ϕµ
µ ,   (2.14) 

Using of Dirac matrixes it is easy to receive the following decomposition: 

    ( )ee pcAe rr
m αεαµ

ˆˆ0
22 ±= ,  (2.15) 

that gives for non-linear part of  Lagrangian the expression: 

        ( )ee
Ne
Mie pcL rr

m αεα ˆˆ0 ±= ,  (2.16) 

Taking into account that 

 ( )pp pcmc rr
⋅−=− αεβ ˆˆ 2 ,  (2.17) 

we see that we can enter in the Lagrangian the mass term of the Dirac equation. 
Thus, it is possible to assert that Mie Lagrangian can be transformed to have the form 
of the Lagrangian of the non-linear field theory, corresponding to the theory of the 
electron of CWED and QED also.  

The use of these expressions leads to the Dirac equations of electron and 
positron, and gives the basis to the Weyl‘s attempt to interpret the asymmetry of  
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both sorts of electricity not in connection with mass, but in connection with 
distinction particle - antiparticle. 

Thus, the assumption of Mie that internal properties of electron are described by 
an electromagnetic field, corresponds to the results of CWED. Actually  in the 
chapter 2 we result that the energy, mass and charge of particle are defined by  the 
inner potentials of this particle. If to accept that potentials inside a particle correspond 
to an energy-momentum of the particle field, it makes the potentials the physically 
certain values, which however are not measurable outside of a particle. In other 
words, the potentials are here the hidden parameters of elementary particles.  

Do these results contradict to the experimental results of modern physics? 
As it is known in classical electrodynamics the potentials play the role of the 

mathematical auxiliary values and have no physical sense. But as it appears, in 
framework of quantum mechanics the potentials have physical sense that is proved 
by Aharonov-Bohm experiment (Aharonov and Bohm, 1959; Feynman, Leighton 
and Sands, 1989). 

As an example of calculation of electron parameters in framework of classical 
theory, we will consider the results of the Born - Infeld theory (Born and Infeld, 
1934) and show, that these results can be considered as some approximation of  
CWED solution. 

3.0.  Born-Infeld  nonlinear theory 
M. Born and L. Infeld revived Mie's theory and proposed a specific model. The 

Born-Infeld theory (Born and Infeld, 1934) rests on the simplest possible Lagrangian: 
the square root of the determinant of a second rank covariant tensor. Such a structure 
automatically guarantees the invariance of the theory under arbitrary coordinate 
transformations, making the fully relativistic and gauge invariant non-linear 
electrodynamics. 

M. Born and L. Infeld proceeded from the idea of a limited value of the 
electromagnetic field strength of the electron (which is identical to idea of a limited 
size of the electron as it is shown below). These reasons led them to the following 
Lagrangian of the non-linear electrodynamics in the vacuum:  
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⎞
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⎝
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−
−−= 4

0

2

2
0

222
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4 E
HE

E
HEELBI

rr

π
,  (3.1) 

where  is the maximum field of electron. 0E
We will consider the most important case of the electrostatic field of the point 

(spherical symmetric) electron. Putting  0=H
r

, ϕgradE −=
r

, 
)()()( strx −=− δδξρ rr

, we will find according to (3.1): 
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Then by the help of the variation principle we obtain: 
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where D
r

 is the electrical induction vector (D-field): 
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which corresponds to the equation: 

   (4 )reDdiv r
rr

δπ=  
solution of which is: 

 3r
reDr

r
= ,  (3.2) 

As we see, from point of view of the D-field, the electron should be considered as 
point particle. 

For the electric field (E-field) we obtain: 
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where 
0

0 E
er =  characterize the electron size. In this case, i.e. from point of view 

of the electric field (E-field),  the electron is not a point particle. This is very 
important specificity of the non-linear theory in comparison with the linear theory, 
which can explain, why experiments on scattering of electron can be interpreted so 
that the electron looks as a point particle (while the renormalization procedure allows 
to eliminate the infinities). 

From above the electron charge density distribution can be found: 

 2/34
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4
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)(24 rrr
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==
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ρ ,  (3.4)  
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Thus, in respect to the electric field the electron charge can be considered as 
distributed mainly in volume of radius , since by  the density will quickly 

aspire to zero. Therefore the size  can be considered as effective radius of electron. 
0r 0rr >>

0r
Using known values for mass and charge of electron and speed of light, it is 

possible to receive  см, which is practically equal to classical 
radius of electron. 

13
0 1028,2 −⋅=r

Also it is easy to find value for the maximal field of electron, being a field in the 
center of the electron (at 0=r ): 

  
m
VCGS

r
eE 2015
2

0
0 1075,21018,9 ⋅=⋅==  . 

As it is known, the two types of fields and the two definitions of the charge 
density, corresponding to them, are also described by the theory of the dielectrics. 
The value: 

 4

4
0

4

r
rr

E
D +
==ε ,     (3.5) 

which is here a function of the position, can be considered as a "dielectric 

permeability of electron". On large distances from a charge, when 00 →
r
r

, ε  

acquires a value equal to unit as in usual electrodynamics. It is possible to tell that 

instead of the expression of energy 2

2

r
e

 Born and Infeld take 2

2

r
e
ε

, and then the 

reduction of r  is compensated by increase of ε  so the full energy remains as final. 
(It is possible to assume, that the presence of physical vacuum should make the 
amendment to value of dielectric permeability, and at the same time, to values of 
potential of electron, its size and other characteristics). 

Thus, proceeding from some formal hypothetical non-linear generalization of 
electrodynamics, it appeared possible (Ivanenko and Sokolov, 1949):  

1. to prove the theorem of stability, i.e. to prove, that in the non-linear theory the 
electron is stable without introduction of forces of non-electromagnetic origin;  

2. to receive the final energy (mass) of electron;  
3. to receive the final size of its electric charge;  
4. to receive the final size of its electromagnetic field. 

3.1.  Other Lagrangians of nonlinear theories 
Also others Lagrangians have been offered for reception of the non-linear 

theory.  
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So E. Schroedinger used the following arbitrary combination for Lagrangian: 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+= 2

0

222
0 1ln

8 E
HEELSch π

,  (3.6) 

It was noted (Ivanenko and Sokolov, 1949), that various variants of formal non-
linear electrodynamics lead to close values of coefficients, if to take into account, that 
the electron radius is equal to classical radius of electron. It was also noted, that the 
basic defect of these theories, as well as of Mie theory, was the arbitrary choice of 
Lagrangian, which had no connection with the quantum theory, in particular, with 
Dirac theory, and did not take into account properties of electron, revealed by the 
last. 

We will show that these theories can be considered as approach of the CWED 
and that they are mathematically connected to the Dirac electron theory. 

4.0. The Born-Infeld theory as an approximation of 
CWED 

Since in general case the CWED (see chapter 2),  is the non-linear EM theory,   
therefore its Lagrangian can contain all possible terms with the invariants of 
electromagnetic theory. Taking into account  the gauge invariance the CWED 
Lagrangian can be written as some function of the following field invariants: 

 ),( 21 IIfL L= ,    (4.1) 

where ( ) ( )HEIHEI
rrrr

⋅=−= 2
22

1 , are the invariants of electromagnetic field 
theory.  

Apparently, for each problem the function  has its special form, which is 
unknown before. We can suppose that in all cases there is an expansion of the 
function  in the Taylor – MacLaurent power series with some unknown expansion 

coefficients. It is also obviously that for the most types of the functions  
the expansion contains approximately the same set of the terms, which are 
distinguished only by the constant coefficients, any of which can be equal to zero (as 
an example of such expansion it is possible to point out the expansion of the quantum 
electrodynamics Lagrangian for particle at the presence of physical vacuum 
(Akhiezer and Berestetskii, 1965; Weisskopf, 1936; Schwinger, 1951). Generally 
this expansion looks like: 

Lf

Lf
),( 21 IIfL

 ( ) '
8
1 22 LBELM +−=

rr

π
,   (4.2) 

where   
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( ) ( ) ( )( )
( ) ( )( ) ...

'
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222222
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BEBEBEBEL
rrrrrr

rrrrrrrr

ζξ

γβα
,  (4.3) 

is a part, which is responsible for the non-linear interaction (here ,...,,,, ζξγβα  
are constants). 

The Lagrangian of the Born-Infeld non-linear electrodynamics 
ican be also expanded into the small parameters  and , 
where  

122 <<Ea 122 <<Ba
2
0

2 1 Ea = so that 

( ) ( ) ( )[ ] ∑+⋅+−+−−= ),(4
328

1 222222
2

22 HEOBEBEaBELBI

rrrrrrrr

ππ
,(4.4)  

where  is the series rest with the terms, containing vectors in powers, 

which are higher than four. Obviously, under conditions  and 
 on large distance from the center of a particle (where there is a 

maximal field) the terms of these series really quickly converge, but on small 
distance from the center it is, apparently, incorrect and here it needs to take into 
account the terms of higher degrees.  

∑ ),( 22 HEO
rr

122 <<Ea
122 <<Ba

 In the chapter 2 we have shown, that at the first approximation Lagrangian of 
CWED in electromagnetic form can be represented as following: 

 ( ) ( ) ( )( )[ ]22222 4
8
1 BEBEbBELN

rrrrrr
⋅+−+−−=

π
,  (4.5) 

where b is some constant. Taking into account (4.4), we can write: 

 BIN LL ≈ ,  (4.6) 

and receive in the framework of CWED for EM electron the approach solution, like 
the solution of Born - Infeld theory, stated briefly above. 

For this reasons it can similarly show that the CWED Lagrangian approximately 
coincides with Lagrangian of Schroedinger and others offered Lagrangians of non-
linear theories, allowing us to calculate the corresponding characteristics of electron. 

Thus, it is not difficult to answer why "various, from the physical point of view, 
variants of formal non-linear electrodynamics lead to close values of coefficients": as 
expansion of non-linear Lagrangian (4.3) shows, all of them are approximately equal 
among  themselves and consequently yield close results. 

At the same time, since Lagrangian and equations of CWED completely 
coincide with Lagrangian and the equations of quantum electrodynamics, the Mie 
theory and its variant – the Born - Infeld theory, is closely connected with the Dirac 
theory. 
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